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We propose an observer-based approach for chaos synchronization and parameter estimation from a scalar
output signal. To begin with, we use geometric control to transform the master system into a standard form
with zero dynamics. Then we construct a slaver to synchronize with the master using a combination of slide
mode control and linear feedback control. Within a finite time, partial synchronization is realized, which further
results in complete synchronization as time tends to infinity. Even if there exists model uncertainty in the
slaver, we can also estimate the unknown model parameter by a simple adaptive rule.
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Chaotic synchronization has been the focus of a growing
literature during the last decade �1–10�. The original syn-
chronization technique was developed by Pecora and Carroll
�1�. In their seminal paper, they addressed the synchroniza-
tion of chaotic systems in the drive-response coupling
scheme. A chaotic system, called the master, generates a sig-
nal which is sent over a channel to a slaver, which uses this
signal to synchronize itself with the master. Recently, chaos
synchronization has been successfully used for the estima-
tion of unknown model parameters in chaotic systems. The
active-passive-decomposition method �11�, the minimization
strategy �12–14�, the iterative method �15�, and statistical
methods �16� can be applied to estimate unknown model
parameters in chaotic systems. Based on the well-known La-
salle invariance principle of differential equations, Huang
and Guo also proposed an adaptive approach to estimate all
unknown parameters �17�. Freitas et al. treated synchroniza-
tion as a control problem and utilized geometric control to
estimate unknown model parameters �18�.

In this paper we also consider the estimation of unknown
parameters in chaotic systems from a scalar output signal.
This signal could be either a variable from the master or a
scalar nonlinear combination of all variables from the master.
We first transform the master into a standard form with zero
dynamics by geometric control theory. Using the combina-
tion of slide mode control and linear feedback control, we
then construct a slaver to synchronize itself with the master.
Within a finite time, partial synchronization is first realized,
which further results in complete synchronization as time
tends to infinity. Even if there exists model uncertainty in the
slaver, we can also estimate the unknown parameter by a
simple adaptive rule. Presently, our strategy can estimate a
single unknown parameter of the master, but this could be
easily extended to many parameters.

Consider the chaotic systems

ẋ = f�x� + g�x�p ,

s�t� = h�x� , �1�

where f�x� ,g�x��Rn are nonlinear functions, x�Rn is the
state, s�t��R is the scalar output signal, and p�R is an
unknown model parameter. Our problem is to identify the

unknown parameter p from the time series s�t�. Throughout
the paper, we assume that the parameter p is slowly varying:
namely, ṗ�0. Within the drive-response coupling scheme
�1�, system �1� is regarded as the master and the signal s�t� is
the driving signal to make a slaver synchronize with the
master. Therefore, we should construct a suitable slaver,
which can be used to estimate the unknown parameter p.

For completeness of this paper, we only introduce two
concepts in the geometric control theory. A detailed back-
ground on geometric control is given in Refs. �18,19�. The
first concept is the Lie derivative operator L—that is,

Lf
0h�x� = h�x�, Lf

jh�x� = �
i=1

n
�Lf

j−1h

�xi
f i�x� �j � 1� . �2�

The second concept is the relative degree. The scalar signal
h�x� has a relative degree r corresponding to the function
g�x� at point x0�M, where M is a smooth manifold of di-
mension n, if

LgLf
i−1h�x� = 0, �3�

for all x in a neighborhood of x0 and all i�r−1, and

LgLf
r−1h�x0� � 0. �4�

If the signal h�x� has a relative degree r for all x�M, we
can transform the master �1� into a standard form by a coor-
dinate transformation �19�. This idea has been already used
in Ref. �18�. However, there are several restrictions in this
work. On the one hand, the estimation of the unknown pa-
rameter �namely, the controller ũ given by Eq. �15� in Ref.
�18�� requires all states of the master. On the other hand, the
relative degree corresponding to the gain H�x� of the control
is n, which is denoted by Eq. �10� in Ref. �18�. In fact, within
the driving-response scheme, it is better that only one scalar
signal is required to drive the slaver, and the unknown pa-
rameter should be estimated by this scalar signal.

Let z1=�1�x�=h�x� , z2=�2�x�=Lfh�x� , . . . ,zr=�r�x�
=Lf

r−1h�x�. It can be shown �19� that there always exist n
−r functions �i �i=r+1, . . . ,n� such that Lg�i�x�=0 and the
Jacobian of the matrix function ��x�= ��1�x� , . . . ,�n�x��T

= �z1 , . . . ,zn�T is defined in the manifold M. Then the master
�1� can be transformed into the following dynamics:
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ż j = zj+1, j = 1,2, . . . ,r − 1,

żr = a�z,�� + b�z,��p ,

�̇ = f0�z,�� , �5�

where the output

y = z1,

z = �z1, . . . ,zr� ,

� = �zr+1, . . . ,zn� ,

a�z,�� = Lf
rh„�−1�z,��,�… ,

and

b�z,�� = LgLf
r−1h„�−1�z,��,�… .

Moreover, the dynamics �̇= f0�0,�� is called the zero
dynamics �19�, which means that limt→����t�−���t��=0 with

��t� and ���t� being the solutions of �̇= f0�� ,�� and ��˙

= f0�� ,���, respectively.
In fact, the meaning of zero dynamics has been already

implied in a PC decomposition-based synchronization �1�.
For an autonomous n-dimensional chaotic system u̇= f�u�,
we first divide the system into two subsystems v̇=g�v ,w�
and ẇ=h�v ,w�, where v= �u1 , . . . ,um�, g= (f1�u� , . . . , fm�u�),
w= �um+1 , . . . ,un�, and h= (fm+1�u� , . . . , fn�u�). Then we cre-
ate a new subsystem ẇ�=h�v ,w��, and we obtain an aug-
mented system v̇=g�v ,w�, ẇ=h�v ,w� , ẇ�=h�v ,w��. If the
dynamics ẇ=h�v ,w� is asymptotically stable for all v, w�
can approach w as time tends to infinity. It means that sub-
systems w and w� are synchronized with the help of the
driving signal v. Generally speaking, if the driving signal is
chosen suitably, many chaotic systems including the Lorenz
system and Rössler system have zero dynamics �see Table I
in Ref. �1��.

For the master �1� and its transformed form �5�, we
construct the model �a slaver�

ż̂ j = ẑ j+1 + wj sgn�� j − ẑ j�, j = 1,2, . . . ,r − 1,

ż̂r = a��,��� + b��,���q + 	��,��� + u ,

�̇� = f0��,��� , �6�

with the estimated partial states

�1 = s�t� = z1,

�i+1 = ẑi+1 + wi sgn��i − ẑi�, i = 1,2, . . . ,r − 1, �7�

where wi �i=1,2 , . . . ,r−1� are parameters, 	�� ,��� is the
model uncertainty, u is the external input, and the parameter
q is adjusted by

q̇ = ��r − ẑr�b��,��� . �8�

We assume that the model uncertainty �	�� ,��� �

��� ,���d�t�, where ��� ,��� is the known function and d�t�

is unknown but bounded time-varying disturbance. We con-
struct a linear feedback control

u = k��r − ẑr� + �2��r − ẑr� , �9�

where k�0.
Therefore we should choose suitable parameters wi to

make the partial synchronization be realized within a finite
time; namely, the errors ei�t�=zi�t�− ẑi�t� are zero after a fi-
nite time. Let �ei�max=maxt�0 �ei�t��. For i=1,2 , . . . ,r−1,
consider the sliding surface 
i :ei=0 and the Lyapunov func-

tion Vi=
1
2ei

2. It is clear that V̇i=eiei+1−wiei sgn�ei��0 if wi is
chosen such that wi� �ei+1�max. Thus 
i is attractive and can
be reached in a finite time T�0. During the sliding surface

i, we also get ėi=0. Hence it follows that for i=1,2 , . . . ,r
−1 and for all t�T,

0 = zi+1 − ẑi+1 − wi sgn�ei� ,

zi+1 = ẑi+1 + wi sgn�ei� ,

zi+1 = �i+1. �10�

A detailed proof of the attractiveness of the sliding surfaces

i and computation of the instant T are given in �6�. It is
known that the time evolution of chaotic systems is confined
to the chaotic attractor which can be estimated within a hy-
perellipsoid using the invariance theorem �20�. Let Di+1 be
the orthogonal projection of the hyperellipsoid onto the
�i+1�th axis of Rn space; then, Di+1 is a line segment of
length Li+1. It is clear that the maximum divergence of the
error ei+1�t� is less than Li+1. Therefore, wi=Li+1 is a suitable
choice for the sliding observer gain. The idea of the choice of
wi is given in Refs. �6,20�.

Equations �7� and �10� imply that partial synchronization
in the systems �5� and �6� can be first realized within a finite
time T. After the instant T, we obtain

ėr = a�z,�� − a��,��� + b�z,��p − b��,���q − 	 − ker − �2er,

ė� = f0�z,�� − f0��,��� , �11�

where e�=�−��. From the above analysis, if we choose the
suitable parameters wi, we get �i=zi after the instant T. Since
the asymptotical stability of the zero dynamics �̇= f0�� ,��,
the error e� tends to zero as time approaches infinity. This
means that ėr�b�� ,���p−b�� ,���q−	−ker−�2er when
time t is sufficiently large. For the error er, let a Lyapunov
function Vr=1/2er

2+1/2�p−q�2. When time t is sufficiently
large, we get

V̇r 
 − ker
2 − ��2er

2 − �d�er�� 
 − ker
2 + d2/4. �12�

Therefore, the error er exponentially decays and is ultimately
bounded. Since the parameters k can be freely adjusted, a
transient performance and final estimation accuracy are guar-
anteed. Hence q� p even if there exists a model uncertainty
	�� ,��� in the model.

From the above analysis, Eqs. �6�–�10� depend on the
“sign” function. Fortunately, this function can be approxi-
mated by the continuous function
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sgn��ei� � ei/��ei� + �� , �13�

where ��0 is a sufficiently small number. For a suitable
choice of �, the continuous action �13� can approach the
discontinuous sign function very well.

In order to verify our main results, we choose Lorenz
system as an example. The dynamics of the Lorenz system is
described by

ẋ1 = 
�x2 − x1�, ẋ2 = �x1 − x2 − x1x3, ẋ3 = − �x3 + x1x2,

�14�

where 
, �, and � are parameters. In order to show the effi-
ciency of our approach, assume that the parameters 
 and �
are known and the parameter � is unknown. Hence the Lo-
renz system becomes ẋ= f�x�+g�x�� where x= �x1 ,x2 ,x3�,
f�x�= �
�x2−x1� ,−x2−x1x3 ,−�x3+x1x2�, and g�x�= �0,x1 ,0�.
For the case of the driving signal s�t�=h�x�=x1, we get
Lgh�x�=0, Lfh�x�=
�x2−x1�, and LgLfh�x�=
x1. Hence the
scalar signal h�x�=x1 has a relative degree r=2 correspond-
ing to g�x�. In addition, we choose the transformation z1

=�1=x1, z2=�2=
�x2−x1�, z3=�3=x3. Then the trans-
formed system is given by

ż1 = z2, ż2 = a�z,�� + b�z,���, �̇ = f0�z,�� �15�

where z= �z1 ,z2�, �=z3, a�z ,��=−
z1z3−
z1− �
+1�z2,
b�z ,��=
z1, and f0�z ,��=−��+z1

2+z1z2 /
.
For the system �15�, we construct a slaver

ż̂1 = ẑ2 + w sgn��1 − ẑ1� , �16�

ż̂2 = a��,��� + b��,����̂ + 	�t� + u, �̇� = f0��,��� ,

with the uncertainty 	�t�. Further, the estimated partial states

�1=z1, �2= ẑ2+w sgn��1− ẑ1� and the estimated parameter �̂

is adjusted by �̂
˙

=
�1��2− ẑ2�. In this simulation the param-
eters 
=10, �=8/3, and ��t�=28+2 sin�0.5t�. We first con-
sider the case where there exists no uncertainty in the model
�16�—i.e., 	�t�=0. In this case we choose a linear feedback
control u=k��2− ẑ2� and the parameters w=0.1, k=1.5, and
�=2. Simulation results are shown in Fig. 1. The second case
is that there is the uncertainty 	�t�= �� �sin�t� in the model
�16�. Hence �	�t� � =�d�t� with �= ��� and d�t�=1. In this case
we choose a linear feedback control u=k��2− ẑ2�+�2��2

− ẑ2� and the parameters w=0.1, k=1.5, and �=2. Simulation
results are plotted in Fig. 2. From these figures, we show that
our approach is very effective to estimate the unknown
model parameter in chaotic systems.

Compared with Refs. �11–18�, our approach has the fol-
lowing merits. �i� We can choose a complex nonlinear func-
tion h�x� as a driving signal, provided that the transformation
��x� exists. The more complex this function is, the more
secure the synchronization is. �ii� Even if the model �6� in-
cludes the model uncertainty, we can also choose a suitable
parameter k to approximately estimate the unknown param-
eter. In the case of the uncertainty, the parameter estimation
is difficult in Refs. �11,14,17,18�. �iii� The parameter estima-
tion �8� is adjusted adaptively, and it only requires a scalar
output signal. This may also estimate the time-varying pa-
rameter. �iv� The speed of partial synchronization can be
adjusted by the parameters wi �i=1,2 , . . . ,r�. In real applica-
tions, we can choose suitable values to make the fast
synchronization.

The authors would like to acknowledge the support of the
Alexander von Humboldt Foundation.
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FIG. 1. Chaos synchronization and parameter estimation with-
out uncertainty in the model �16�. �a�–�c� show the curves of states
of the master �solid lines� and the slaver �dashed lines�. �d� shows

the true parameter � �solid line� and the estimated parameter �̂
�dashed line�.
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FIG. 2. Chaos synchronization and parameter estimation with
uncertainty 	�t�= �� �sin�t� in the model �16�. �a�–�c� show the
curves of states of the master �solid lines� and the slaver �dashed
lines�. �d� shows the true parameter � �solid line� and the estimated

parameter �̂ �dashed line�.
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